The temperature range of liquid lead and silver and an estimate of their critical constants 745

WARTENBERG.⁽⁶⁾ They show appreciable scatter around 2400°K, and additional experimental work in this pressure range and above is recommended.

STULL and SINKE's vapour-pressure data lead to the following expressions, for Pb:

$$\log_{10} P_{\rm atm} = -9,596/T + 4.74043 \ (T \ in \ ^{\circ}K)$$

or in exponential form: $P_{\rm atm} = 5.5009 \times 10^4$. exp (-22,100/T), and for Ag:

$$\log_{10} P_{\text{atm}} = -13,388/T + 5.46223 \ (T \text{ in }^{\circ}\text{K})$$

or in exponential form: $P_{\rm atm} = 2.8989 \times 10^5$. exp (-30,827/T)

Since the density of the ideal saturated vapour, $D_{\text{vap}} = A/V_A$, where A and V_A are

atomic weight and volume respectively, it follows, from the ideal gas laws, that:

$$D_{\rm vap} = A \cdot P/R \cdot T$$

thus, D_{vap} , for Pb = $1.38920/T \times 10^5$. exp (-22,100/T) and for Ag = $3.8145/T \times 10^5$. exp (-30,827/T)

The values so obtained for lead and silver are tabulated in Table 2.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2500 0.00805 7.97 0.000681 1.28 3000 0.0292 34.7 0.004340 10.00 3500 0.0722 100.1 0.01629 43.4 4000 0.1381 219 0.04286 130.0	
3000 0.0292 34.7 0.004340 10.00 3500 0.0722 100.1 0.01629 43.4 4000 0.1381 219 0.04286 130.0	
3500 0.0722 100.1 0.01629 43.4 4000 0.1381 219 0.04286 130.0	
4000 0.1381 219 0.04286 130.0	
4500 0.2276 406 0.08967 307	
5000 0.3344 662 0.1601 610	
5500 — — 0.2549 1067	
6000 — — 0.3730 1700	
6500 — — 0.5111 2527	
7000 — — 0.6658 3500	

TABLE 2.-D^{id.} IN G/CM³ CALCULATED FROM VAPOUR-PRESSURE EQUATIONS AND IDEAL

Calculations of the liquid densities of Pb and Ag above their normal boiling point

From the law of rectilinear diameter it follows that:

$$D_{\mathrm{liq.}} = 2D_{\mathrm{g}^{*}} - D_{\mathrm{vap.}}^{\mathrm{id.}}$$

up to about $T_{\rm red.} = 0.85$, i.e., 4500°K for Pb and 6300°K for Ag. Above these temperatures, as was shown in the case of mercury,^(1,2) the real saturated vapour density begins to digress appreciably from the ideal density. This can be readily seen from the anticipated liquid and gas densities in the critical and near critical regions of Figs. 1 and 2.

Up to $T_{\rm red} = 0.85$ and based on the above general equation, the specific and exact equations for the densities of Pb and Ag are respectively: $D_{\text{liq.}}^T$ of Pb, in g/cm³ =

 $11.4692 - 13.174 \times 10^{-4}T - \frac{1.3892}{T} \times 10^{5}$. exp (-22,100/T)

and for Ag =

$$10.465 - 9.067 \times 10^{-4}T - \frac{3.8145}{T} \times 10^{5} \cdot \exp(-30,827/T)$$

where T is in °K.

In the classical work on the densities of liquids it has been the custom to express the liquid density in power series in T (see for example International Critical Tables, Volumes 1, 2 and 3). Using the method of least squares the following expressions have been obtained for D_{1iq} of Pb and Ag:

 $D_{11iq.}$ of Pb (g/cm³) = 11.3039 - 1.1576 × 10⁻³T - 3.847 × 10⁻⁸T² and

$$D_{\text{lig.}}$$
 of Ag (g/cm³) = 10.1667 - 6.9155 × 10⁻⁴T - 3.7996 × 10⁻⁸T² (T in °K)

The calculated liquid densities up to $T_{\rm red.} = 0.85$, using the exact or exponential equations given above, are shown in Table 3 and reproduced in Figs. 1 and 2.

The calculated *ideal* liquid and vapour densities cross the rectilinear diameter at a point which gives a maximum limit of the critical temperature (7000°K for Pb and 8500°K for Ag). The lower limit of critical temperature is a range where the vapour density is about 20-25 per cent of the liquid density, i.e., about 5000°K for Pb and

746